
Routing in Networks with Random Topologies

Keith Scott Nicholas l]aInbos
{kscott,  l)a*lll)os}Clec.  L[cla.cclLl

I)epartrnent  of I)lectrical  lngitleeriug
[University of California at I,os Angeles

I,OS Augeles,  CA, 90024-1594

AI IS’1’RAC’1’: We examine the problems of routing
and server  assignment in network with ranclom con-
nectivities. In such a network the basic topology is
fixed, but during each time slot ancl for each of its iw
~Jut queues, each server (node) is either connected to or
disconnected from each of its input queues with some
probability. I~uring each time slot a server must decide
which of its connected input queues to serve and into
which of its output queues the completed job should
be placed.

I>or single-input single-output acyclic queueing  networks
~vith random connectivities,  we show that the joint
routing/service policy that routes customers along the
least populated path to the destination and serves any
11011 -eIIlpty queue lllaXilllU1lliZeS  throughput. We briefly
cliscuss  some i]nplernelltation  aspects of the proposed
policy, including its rc)bustness  in stabilizing the sys-
tenl ~vith  respect to delayed state information.

1 Introduction

Many types of communications systenls  exhibit tinle-
varying collnectivity  among the various nodes. ‘1’hese
inclucle  terrestrial mobile wireless systems, meteor-burst
communications systems, and environments with hard
interference constraints such as a manufacturing floor.
If the i[ldividual satellites of a satellite network are al-
Iotvcd to modify their orbits or the scheduli[lg  of a Iim
ikd number of antcllnae  for communicating with their
lteighborsl  this would also generate connectivities  that
vary randomly with time.

l’revious works have studied the queueing  statistics
for a system with a single server with randonlly  vary-
i[lg connectivity to parallel queues [1, 2]. In additio[l,
[2] esalnines  net;vork of such nodes under general as-
sulnptions  about the input and service distributions of
jot.) s/custonlers. In [3], the authors use coupling to ex-

anlinc the problem of routing to parallel finite-length
queues with rancloln connectivity to a single server to
miuimize the systenl’s  loss flo~v.

In [2] the authors compute the maximum stable in-
put rate to an acyclic system of queues with ranclomly
varying connectivities  by use of a linear program. Af-
ter solving the program, jobs are stochastically  routed
at the output of each server to achieve specified av-
erage flows across the various links in the network,
stabilizing it. lJnfortunately,  the complexity of the
linear program grows expone[[tially  with network size
and requires precise knowledge of the connection prob-
abilities. ‘1’hus it may be difficult in cases where the
connection probabilities are unknown and/or varying
to first estimate them and then solve for the optimum
flow rates with which to route customers. It is for
these reasons that we seek a simple, stationary joint
routing/service policy.

In this paper we show that for single-input single-output
acyclic. systems with random link connectivities  as il-
lustrated in figure  1, routing along the least populated
path to the destination ancl serving any non-empty
connected queue stabilizes the system  whenever possi-
ble. ‘l’hat is, upon service completion, the server calcu-
lates the number of customers in each path from itself
to tlie destination and routes the newly completed cus-
tomer along the path containing the fewest jobs. This
routing scheme recluires  that a nocle ktio;v all of the
queue lengths of the system, but not the connection
probabilities of the lilllis. ‘1’hLIs  it responds dynamic-
ally to changes ill the network connection probabili-
ties.

‘1’he rest of this paper is organized as fo!lo~vs.  III section
2 we present our model for networks with ranclorn  con-
llectivities. Section 3 gives the proof that 1,} ’1’ routing
stabilizes the systenl. III sectiou -1 \ve briefly touch



qE {1 ,2,.. ., IQI}. ‘1’hroughout  this paper wernake
ttle follotvirlg  a.ssu[[lptio[ls:

Figure 1: A network with random connectivities.  here
l~j gives the probability that server  ~ is connected to
server i’s output clueue  during a given time slot.

on solne iI[l~JlcIllelltaticJll  details. Section .5 gives some
concluding remark  and discusses our ongoiug work.

2 S y s t e m  M o d e l

We consicler  a single-input single-output acyclic net-
work composed of N nodes (servers); N = {1, 2, . . . . N}
as shown in figure 1. lime is slotted, with slots iuclexecl
by t 6 Z+.. All jobs enter the system through a single
node, and we define At as the number of arrivals to the
system up to and including time t. ‘J’here is at most
one arrival during any given slot.

I~ac.h server i is connected to a set Pi of parents and a
set Ci of children by FC1’S buffers. ‘1’he set of all such
buffers is denoted by Q and its cardinality  by IQI. We
refer to the queue between nocles  i and j as either one
of node i’s chilci or output queues, or as a. parent  or
input queue for node j. For generality we will allow
multiple parallel connections between pairs of servers.

\tTe assu[ne that a node always has access to (is con-
nected to) each of its output queues. IJor the cotl-
nections  between nocles and their parent clueues,  we
define the binary connectivity variables {AI/,j,k}.  If
A~~,j,k n ] we say that server ~ is connected to the kt)’
parallel clueue  connecting servers i and j during slot t,
in which case it can serve customers fro[[l that queue.
If .lf~j,k  is O we say that server j is l~ot conuectcd  to
tlic k(~’ output queue of server i during slot 1. ‘1’hus
tile connectivitim  for the slot are set before the server
makes its decision about which queue to serve. When
there is only one queue connecting a pair of servers we
drop the third index.

W e  call  define a onc’-to-o[~e  corrcsporlda[lce  hetwcen
the triples (i, j, k) that  appear  in th~’ dc’finitious  of tl~~’
connectivity variables aud the indices of tllc q(lcues ill
Q .  ‘1’IIus wc cat] tvrite l’(A/z,,,k == 1) == l; f o r  s o m e

A 1: ‘1’he  probability of an arrival during any given slot
is A. IJor each tri~let  (i, ~, k), the variables A~~j,k are
Lakcll to be tile states at tirllc t of tliro-state  Markov
chains which are indcpellclent  of each other and the
arrival st reanl. We denote by lfj,k the probability
that Afi,j,k == 1. ‘J’he service times of all jobs are equal
to the slot duration, so that if a server chooses to serve
a given custonler  from a connected input  queue, the

customer will complete service by the encl of the time
slot aucl, if the server is nc~t the destination node for
the network, \vill  be placed in one of the server’s output
q u e Ues . ‘1’he operation of choosing the output queue
into which the customer will I.)e placed is routing.

As the system state we cc]nsider  the vector Y(t) =
(X(t), C(t)) where X(f) =. (X,(t), q = 1,2,..., \Q])
is the vector of queue lengths and C(f) = (Cq(t), q =
1,2 ,..., IQI) is the vector of server-queue connectivi-
ties at time t. That is, if Cq(t) = 1 we say that the
server at the tail of queue q is connected to it and has
the option of serving it.

We seek a stationary policy T that bases the rout-
ing and allocation decisions of each server during each
slot on the information in Y(t). We clenote the set
of such stationary policies by G. A policy K is noth-
ing more than a function 7r : ~ E Y(t) + U(t) =
(si(t), ~i(t), ?’i(~)) : i = 1,2,..., N) where
(Si(t),  k~(t), ?’i(t))  = (j, k, 1) indicates that server i serves
its k~h parerlt queue from node j during slot t and
routes the customer to its child queue destined for node
1. If a particular server i does not serve any customer
during a slot then wc define si(t) == kz(t) = ri(t) = –1.
l’he clestination nocle routes customers to an imaginary
node with id -2.

Remark 2.1 Udm the assumptions A 1 and using a
stationary 7vutirlg\scrl’icc  policy, the system  state Y(t)
is a A{(1 r>kou ch[[ in,

/)cjinition  / : JVC define the system to be stable uncler
so[ne routing/service policy T < G if the queue length
I)rocess l’ (t) is irreducible and has a probability dis-
tribution that converges in the sense that

Iim l’[X(t) < b] = J’(b), Vb E \
t+x,

(1)

Lvhere  }“(. ) is a probability distribution 011 ,\.



[kjnitim  2 : 1$’e say that the system is stabilimbk if
t,hew exists a po]icy  in G’ uncier  which it is stable.

3 Stability under LPP Routing

Theorem 3.1 lbr single-input sillglc-output acyclic rlet-
lll(jd’.$  Illith T’(llldOl~l  COll~lCCtiUi[iC’S,  [}lC ‘jOill[  l’OUti?l~/

allocolion  policy that routes custo[nerx  ulong  the least
populated path to the destination while  alulays  scvuittg
a non-anpty input queue (ij one exists)  stabilixs  the
systc:m whencucr it is stabilizable. PVhcn two 01’ more
paths to the destination contain the same nuntbcr oj
jobs, olw is chosen at mndorn.

‘1’he example in figure 2 illustrates tile need to route
along the shortest path rather than to the shortest out-
put. queue. LJnder the ranclom connectivity assump
tions, someservers  Inay be very willing to accept new
jobs while being unable to forwarcl  them. ‘1’hese servers
could maintain very short input queues while hoarding
customers in their output queues. Since they maintain
short input queues, parents of these servers would con-
tinue to route customers to them, even though those
customers are collecti[lg  and are not leaving the net-
work. By routing customers along the least populated
path to the destination we avoid this problem.

L)

Figure  2: An example of a hoarding server.
lower server al~vays  tries to grab custonlers

Ilere the
from its

input buffer, but they get trapped in its output buffers.

No\v consicle.r  a single-source, single dcwtillation,  single
commodity acyclic network with random conncctivities
bet~veen  servers and their input queues. A cutset  (~ is
defined as a set of links in the network such that every
patil fronl tile sc)urce to the destination traverses at
least one Iillk in C:.

ftactl  Cutset  L’, composed of NC links, defines a set
,S(T of servers co[llposed  of those servers at tile tails of

the links in C (i.e. those servers that serve at least
onc link in C). W’e label these servers .as S& for i =-
1,2 , . . . . N.sC. lJor a particular server S& connected to
.1S;, links in C, let its connection probabilities to those
links be given  by I’(C, i,j), j = 1,2,.. .JC,. Note that
tile server ,S& may be con[lectecl  to links not in C as
\vell.

l;ach cutset  C has associated ~vith  it a maximal flow’
j~, defined as the maximum rate at which customers
can be served from the links in C. ‘1’his rnazirnctl  rate
is purely a function of the connection probabilities and
does not depend on the service or routing clisciplines
and is defined as follows:

Nsc

J(: = x fs&
2=1

J .

fs:, =  1  –  fi(l – P(C, r’, j))
j=l

(2)

(3)

3.1 Necessity

L e m m a  3.1 Let j“ = nlinC6c  ~c where C is the set of
oil cutsds. If A > f* then the system is unstable.

Proof : ‘J’he set ~ is not empty. Assume ~ > j“
and let At be the number of arrivals to the system in
[0 ,  ~]. Fro,,, our assumptiol,s,  lim+m A t / t +  A. Si[,ce
A > ~“, we have A > ~CJ for some L“. I,et St be the
number of potential service opportunities to links in c’
cluring [0, t], then

(4)

If fV~ is the number of customers in the system at time
t,

~t > At -- St— (.5)

al~d taking the lilnit  as t + w and clividing  by t gives:

= A - J - * > O (7)



3.2 Sufficiency

L e m m a  3.2 l’or ~ > j*, custo?ncrs  accu[rlulate  iIL the
.SYSICIT1  Ot U l’Utt2  lt2<~S t)l CIIt Or c~[l(l[ to A – J*. ~’}l~t  is:

Iim (# OfjOIIS in Sy<StCnl)/t  <A- f *
t+x (8)

‘J’llusforartival  rates~ < f* the system is retestable.

let 2 be the set of all paths from the source to the des-
tination, with X; clcnoting the number of customers
in the syste[n at time t who are traversing path ~j.
At each node, customers are routed along the least
populated pathso that in particular a custonlerarriv-
in.g at time t will be routed along the path Zi where

Remark  3.1  Siriceclistorlle  rs[lrcrolltecl  irt{le~~ertdcrttly
at each Tlode, we do not knoul on arrival exactly ulhich
path o custonter  will take. Jor any given customer
homuer,  u?ec{lrl  cortsi[lcr  r[lTlrtilig  thesysle~rt  uTlti!t/lut
customer exits, at uitich time its puth is determined.

Remark 3.2 Although Zj may be zero,  this does no t
mean that there are no customers in any of the queues
comprisirig  Zj, as other paths may shurc links with 2j.

Proof : Suppose that nla~i Xi + M and that there
m~cre a 2j such that  Iim inff X; < cm. IJnder our as-
Sunlptlo[ls,  llmt+m, Zj exists, so lim supf Zj is also fi-
nite. Note that under I,PP routing, custolners  are only
routed along tile longest path when all path lengths are
eclual,  and consider the routing decisions of the source
node.

Si[~ce Iim inft maxi X: == cc and limsup~  X; < cm, there
must be a time 1“ such that for all t ~ 7“, [lla~~ ~~ >
~~. ]Iut then \ve wrould have limsupf  I[iaxi  X; = [na~i Z?”,
since 110 customers would be routed alo]lg  ttie longer
paths after ti[ne l)’. ‘1’his contradicts tile assumption
that  nlax~ ~, + m, so we must Ilave XJ –> m Vj. 1

Assume A > f*. IJor any cutset L’, let }’c: be ther  nun-
bcr of custonlers  who have already crossed C. l)efine
the most forwarcl cutset Cj as the cutset  for which 1)
all oft Ile queues defining ttle cutset  are blowing u~) and
2) Iilll sup }~~., is finite. ‘1’l~ere lnllst  be at least one path

for which the number of customers is growing without
bou IId by Icmtna 3.1, and Iel[l[na 3.3 shows that that
[lumber  c)f jobs in every path must be increasing with
tilne. ‘1’llese  together with the Markovian  assumptions
imply the cxistance  of C’f.

l,et Ar~,, be the number of customers who have not yet
traversed the links in Cf

A’/.,  = .4t – flolv across L’f in [O,t] (9)

so that the total  number of customers in the system at
tilne t is AT}, + Y&f.

Sillcc  all queues in C’j are blowing up, there will be
a time 7’* SUCII that for t > 7’* there are altvays  cus-
tolners  to serve in each of the queues of Cf. ‘1’hus for
any nomiclling  service policy the rate of flow of cus-
tolners  across Cf, f~f, can be calculated from equation
(2). Note that fc:, z f“. Now fort z I’* w have:

N:, + 1’/., = N;; +  (At _  A7’”
)  –  fc’,  (t –7”)  +Y:.,

< N::; + (At – A*”) – f*(t – 7’*) + y:,,

taking the limit and clividing by t gives:

A’:,f + Yt
lim
t+ml t

N::; + (At – A7’”) – fC~(t – 7’*) + l~.f
– lim—

t+m t
< A – f ”

‘1’his proves lemma 3.2

Proof of Theorem 3.1: ‘l’his follows immediately
from l,emrnas 3.1 and 3.2. ■

4 Implementation Issues

here we discuss implementation issues associated with
the routing/service policy. YVe first address the prob
Ienl of choosing which queue to serve.

‘1’he service policy employed here is to serve any non-
er]ll)ty  q(leue. ‘1’hus  each server must poll all of its in-
put, queues cluring eiery slc~t  to deterInine  tvhich  have
customers. PVe conjecture that the follolving  service
policy has tile saIne stability region under suitable as-
sulnptions.  Service policy /3: Assume that at some
poiIlt  i[l the past, the server knew’ the lengths of all
of its input  queues. Now, included ill the header of
eaclI  custo[l~er  is tile number of jot)s  that have arrived
to the queue since the last customer was served. “J’he



Selvct’ tllcll serves the longest  Collllecuxl  queue I)({SC(J
0/1 t//i,5 inform(l(ion. ‘1’hus  the server will collti[lue  to
scrvcttl~c curre[it  cluelie  (Intil its leilgth drops twlow the
last reported length of sollleotllcr collllectccl  queue, at
wllicll  tithe tile server \vill  stvitcll  its attelltioll.

Sirllilarly,  \\’ecollject\lretlliit  systems tabilityis  rol~ust
[vith reslwct tode]ays  ill the queue length in forlllation.
l’eriodically  updating the path Iengtlls to tlledestina-
tion could t~edolle  as l$fittl  tlleclllcue  le[lgtlls  in theser-
vice policy ~~, with path Ieligth in fornla.tioll  attached
to ackllo~vleclgeltlellts  of received packets. ‘1’his would
greatly decrease tile overheadassociated  Ivith thel)l’l)
routing policy.

5 C o n c l u s i o n

VVe have stiown that for acyclic networks ~vith raw
dom collncctivitics  and routing, the policy that max-
imizes throughput is the one that routes  custolners
alollgthes  hortestpath  to the destination ateach node
and serves the longest connected queue at eactl  node.
\Ve are currently working on the proofs that the service
policy @ outii[led above and itscorrespollding  routing
policy stabilize the system, as well as extcndi[]g our
existing proofs to the stationary alld ergodic case.
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